z-logo
Premium
Identifying Multinuclear Organometallic Intermediates in On‐Surface [2+2] Cycloaddition Reactions
Author(s) -
Zhang Ran,
Xia Bowen,
Xu Hu,
Lin Nian
Publication year - 2019
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201909278
Subject(s) - cycloaddition , chemistry , copper , organometallic chemistry , molecule , metal , covalent bond , crystallography , catalysis , organic chemistry , crystal structure
We investigate the on‐surface [2+2] cycloaddition reaction of 2,3,6,7,10,11‐hexabromotriphenylene (HBTP) on Ag(111), Cu(111), Au(111), and Cu‐dosed Au(111) surfaces using STM and DFT simulation focusing on the organometallic intermediates. The fully debrominated HBTP molecules form an organo‐silver framework on Ag(111) and an organo‐copper framework on Cu(111), both incorporating multinuclear metal adatom clusters. The organo‐silver framework is converted into porous covalent networks via [2+2] cycloaddition above 240 °C. In contrast, the organo‐copper framework is very stable and does not undergo [2+2] cycloaddition even at 300 °C. On Au(111), no organo‐gold intermediate of [2+2] cycloaddition is observed. After loading Cu onto Au(111), the partially debrominated HBTP molecules bind to Cu adatom dimers to form multinuclear organo‐copper complexes at 100 °C which undergo [2+2] cycloaddition at 140 °C. This study shows that the choice of surface can direct the reaction pathway.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here