z-logo
Premium
Phosphite‐Catalyzed C−H Allylation of Azaarenes via an Enantioselective [2,3]‐Aza‐Wittig Rearrangement
Author(s) -
Motaleb Abdul,
Rani Soniya,
Das Tamal,
Gonnade Rajesh G.,
Maity Pradip
Publication year - 2019
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201906681
Subject(s) - enantioselective synthesis , wittig reaction , isoquinoline , chemistry , quinoline , nucleophile , pyridine , allylic rearrangement , catalysis , alkylation , medicinal chemistry , organic chemistry
A phosphite‐mediated [2,3]‐aza‐Wittig rearrangement has been developed for the regio‐ and enantioselective allylic alkylation of six‐membered heteroaromatic compounds (azaarenes). The nucleophilic phosphite adducts of N‐allyl salts undergo a stereoselective base‐mediated aza‐Wittig rearrangement and dissociation of the chiral phosphite for overall C−H functionalization of azaarenes. This method provides efficient access to tertiary and quaternary chiral centers in isoquinoline, quinoline, and pyridine systems, tolerating a broad variety of substituents on both the allyl part and azaarenes. Catalysis with chiral phosphites is also demonstrated with synthetically useful yields and enantioselectivities.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here