z-logo
Premium
Dissipative Catalysis with a Molecular Machine
Author(s) -
Biagini Chiara,
Fielden Stephen D. P.,
Leigh David A.,
Schaufelberger Fredrik,
Di Stefano Stefano,
Thomas Dean
Publication year - 2019
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201905250
Subject(s) - rotaxane , catalysis , molecular machine , chemistry , dissipative system , combinatorial chemistry , chemical engineering , nanotechnology , materials science , organic chemistry , molecule , supramolecular chemistry , thermodynamics , physics , engineering
We report on catalysis by a fuel‐induced transient state of a synthetic molecular machine. A [2]rotaxane molecular shuttle containing secondary ammonium/amine and thiourea stations is converted between catalytically inactive and active states by pulses of a chemical fuel (trichloroacetic acid), which is itself decomposed by the machine and/or the presence of additional base. The ON‐state of the rotaxane catalyzes the reduction of a nitrostyrene by transfer hydrogenation. By varying the amount of fuel added, the lifetime of the rotaxane ON‐state can be regulated and temporal control of catalysis achieved. The system can be pulsed with chemical fuel several times in succession, with each pulse activating catalysis for a time period determined by the amount of fuel added. Dissipative catalysis by synthetic molecular machines has implications for the future design of networks that feature communication and signaling between the components.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here