Premium
Poly(arylenevinylene)s through Ring‐Opening Metathesis Polymerization of an Unsymmetrical Donor‐Acceptor Cyclophane
Author(s) -
Elacqua Elizabeth,
Gregor Maria
Publication year - 2019
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201905137
Subject(s) - romp , ring opening metathesis polymerisation , metathesis , polymerization , copolymer , polymer chemistry , cyclophane , acceptor , electron acceptor , ring opening polymerization , materials science , polymer , chemistry , photochemistry , molecule , organic chemistry , composite material , physics , condensed matter physics
Reported are well‐defined donor‐acceptor alternating copolymers prepared using ring‐opening metathesis polymerization (ROMP). Unsymmetrical cyclophanedienes comprising electron‐donating (4‐methoxy‐1‐(2‐ethylhexyl)oxy)benzene (MEH) and electron‐accepting benzothiadiazole (BT) rings were synthesized from the corresponding [3.3]dithiaparacyclophanes. ROMP of the strained unsymmetrical and “electronically‐ambiguous” cyclophanedienes proceeded in a controlled manner in the presence of either Hoveyda–Grubbs II or Grubbs II initiator in wake of both steric and electronic encumbrance. The resulting polymers, comprising alternating BT and MEH‐PPV units, are achieved in molecular weights exceeding 20k with Đ values ranging from 1.1–1.4. The living nature of the polymerization is verified through the formation of rod‐coil and rod‐rod block copolymers. Our strategy to develop previously unrealized polymers from functional building blocks featuring a locked‐in D‐A unit is significant in a field striving to achieve well‐defined and sequence‐specific materials.