z-logo
Premium
Surface‐Dependent Chemoselectivity in C−C Coupling Reactions
Author(s) -
Chen Zhi,
Lin Tao,
Zhang Liding,
Zhang Lei,
Xiang Bingxi,
Xu Hu,
Klappenberger Florian,
Barth Johannes V.,
Klyatskaya Svetlana,
Ruben Mario
Publication year - 2019
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201900636
Subject(s) - chemoselectivity , alkyne , alkene , chemistry , density functional theory , covalent bond , coupling reaction , computational chemistry , organic chemistry , catalysis
Surface‐confined covalent coupling reactions of the linear compound 4‐(but‐3‐en‐1‐ynyl)‐4′‐ethynyl‐1,1′‐biphenyl ( 1 ), which contains one alkyne and one enyne group on opposing ends, have been investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The reactions show a surface‐dependent chemoselectivity: on Au(111), compound 1 preferentially yields cyclotrimerization products, while on Cu(111), a selective coupling between the enyne and alkyne groups is observed. Linear, V‐shaped string formations combined with Y‐shaped bifurcation motifs result in a random reticulation on the entire surface. DFT calculations show that the C−H⋅⋅⋅π δ− transition state of the reaction between the deprotonated alkyne group and a nearby H‐donor of the alkene group plays a key role in the mechanism and high chemoselectivity. This study highlights a concept that opens new avenues to the surface‐confined synthesis of covalent carbon‐based sp–sp 2 polymers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom