z-logo
Premium
Multicomponent Reactions of Pyridines To Give Ring‐Fused Pyridiniums: In Situ Activation Strategy Using 1,2‐Dichloroethane as a Vinyl Equivalent
Author(s) -
Wang Zhishuo,
Yin Jiangliang,
Zhou Fulin,
Liu Yunqi,
You Jingsong
Publication year - 2019
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201812167
Subject(s) - annulation , chemistry , cationic polymerization , 1,2 dichloroethane , pyridine , ring (chemistry) , regioselectivity , dichloroethane , ionic bonding , rhodium , amine gas treating , combinatorial chemistry , catalysis , medicinal chemistry , organic chemistry , ion
Reported herein is a rhodium(III)‐catalyzed three‐component annulation reaction of simple pyridines, alkynes, and 1,2‐dichloroethane (DCE), affording a streamlined pathway to diverse ring‐fused pyridiniums. DCE not only serves as a vinyl equivalent but also as an in situ activating agent for pyridine C2−H activation. A cationic five‐membered rhodacycle complex has been isolated and proposed as a possible intermediate. This strategy can be extended to other N‐containing heteroarenes for the synthesis of multiring‐fused pyridiniums. These multicomponent reactions exhibit excellent regioselectivity for 1,3‐diynes, paving a path to the cascade cyclization of 3‐fluoropyridine or N ‐methylpyridin‐3‐amine with 1,3‐diynes for the construction of brand‐new tricyclic‐fused pyrano‐ or hydropyridoquinolizinium salts. These ionic fluorophores have been investigated as potential biomarkers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here