z-logo
Premium
Target‐Induced Catalytic Assembly of Y‐Shaped DNA and Its Application for In Situ Imaging of MicroRNAs
Author(s) -
Xue Chang,
Zhang ShuXin,
Ouyang ChangHe,
Chang Dingran,
Salena Bruno J.,
Li Yingfu,
Wu ZaiSheng
Publication year - 2018
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201804741
Subject(s) - dna , in situ , microrna , biophysics , in situ hybridization , chemistry , computational biology , nanotechnology , microbiology and biotechnology , biology , materials science , gene , biochemistry , messenger rna , organic chemistry
DNA is a highly programmable material that can be configured into unique high‐order structures, such as DNA branched junctions containing multiple helical arms converging at a center. Herein we show that DNA programmability can deliver in situ growth of a 3‐way junction‐based DNA structure (denoted Y‐shaped DNA) with the use of three hairpin‐shaped DNA molecules as precursors, a specific microRNA target as a recyclable trigger, and a DNA polymerase as a driver. We demonstrate that the Y‐shaped configuration comes with the benefit of restricted freedom of movement in confined cellular environment, which makes the approach ideally suited for in situ imaging of small RNA targets, such as microRNAs. Comparative analysis illustrates that the proposed imaging technique is superior to both the classic fluorescence in situ hybridization (FISH) method and an analogous amplified imaging method via programmed growth of a double‐stranded DNA (rather than Y‐shaped DNA) product.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here