Premium
Catalytic C−H Trifluoromethoxylation of Arenes and Heteroarenes
Author(s) -
Zheng Weijia,
MoralesRivera Cristian A.,
Lee Johnny W.,
Liu Peng,
Ngai MingYu
Publication year - 2018
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201800598
Subject(s) - chemistry , reagent , catalysis , redox , radical , combinatorial chemistry , aryl , photochemistry , deprotonation , photoexcitation , intermolecular force , organic chemistry , molecule , ion , excited state , alkyl , physics , nuclear physics
The intermolecular C−H trifluoromethoxylation of arenes remains a long‐standing and unsolved problem in organic synthesis. Herein, we report the first catalytic protocol employing a novel trifluoromethoxylating reagent and redox‐active catalysts for the direct (hetero)aryl C−H trifluoromethoxylation. Our approach is operationally simple, proceeds at room temperature, uses easy‐to‐handle reagents, requires only 0.03 mol % of redox‐active catalysts, does not need specialized reaction apparatus, and tolerates a wide variety of functional groups and complex structures such as sugars and natural product derivatives. Importantly, both ground‐state and photoexcited redox‐active catalysts are effective. Detailed computational and experimental studies suggest a unique reaction pathway where photoexcitation of the trifluoromethoxylating reagent releases the OCF 3 radical that is trapped by (hetero)arenes. The resulting cyclohexadienyl radicals are oxidized by redox‐active catalysts and deprotonated to form the desired products of trifluoromethoxylation.