Premium
Chelating N‐Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO 2 Reduction to Formate and Carbon Monoxide: Surface Organometallic Chemistry
Author(s) -
Cao Zhi,
Derrick Jeffrey S.,
Xu Jun,
Gao Rui,
Gong Ming,
Nichols Eva M.,
Smith Peter T.,
Liu Xingwu,
Wen Xiaodong,
Copéret Christophe,
Chang Christopher J.
Publication year - 2018
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201800367
Subject(s) - chemistry , denticity , carbene , chelation , formate , palladium , carbon monoxide , organometallic chemistry , electrochemistry , reactivity (psychology) , catalysis , ligand (biochemistry) , inorganic chemistry , electrocatalyst , combinatorial chemistry , polymer chemistry , photochemistry , organic chemistry , electrode , crystal structure , medicine , biochemistry , alternative medicine , receptor , pathology
Reported here is the chelate effect as a design principle for tuning heterogeneous catalysts for electrochemical CO 2 reduction. Palladium functionalized with a chelating tris‐N‐heterocyclic carbene (NHC) ligand (Pd‐timtmb Me ) exhibits a 32‐fold increase in activity for electrochemical reduction of CO 2 to C1 products with high Faradaic efficiency (FE C1 =86 %) compared to the parent unfunctionalized Pd foil (FE=23 %), and with sustained activity relative to a monodentate NHC‐ligated Pd electrode (Pd‐mimtmb Me ). The results highlight the contributions of the chelate effect for tailoring and maintaining reactivity at molecular‐materials interfaces enabled by surface organometallic chemistry.