Premium
Highly Branched Polymers with Layered Structures that Mimic Light‐Harvesting Processes
Author(s) -
Shi Yi,
Cao Xiaosong,
Hu Daqiao,
Gao Haifeng
Publication year - 2018
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201709492
Subject(s) - chromophore , excited state , coumarin , polymer , photochemistry , cycloaddition , polymerization , acceptor , fluorescence , alkyne , chemistry , materials science , organic chemistry , catalysis , optics , physics , nuclear physics , condensed matter physics
Hyperbranched polymers (HBPs) with decorated donor and acceptor chromophores in different domains were constructed to demonstrate the function of light harvesting in a polymeric nanostructure. Taking advantage of our recently developed chain‐growth copper‐catalyzed azide–alkyne cycloaddition polymerization, two structural parameters in the HBPs, for example, the molar ratio of the acceptor Coumarin 343 in the core to the donor Coumarin 2 on the periphery, and the average distance between these two layers, could be independently varied in a one‐pot synthesis. The results demonstrated an efficient energy transfer from the excited Coumarin 2 to the ground‐state Coumarin 343 in the core, with the efficiency of the energy transfer reaching as high as 98 %. The excited Coumarin 343, after receiving energy from donor Coumarin 2 emitted higher fluorescence intensity than when directly excited, indicating an observed light concentration effect from the periphery dye to the central dye in one polymer structure.