z-logo
Premium
A Cascade Strategy Enables a Total Synthesis of (±)‐Morphine
Author(s) -
Chu Shuyu,
Münster Niels,
Balan Tudor,
Smith Martin D.
Publication year - 2016
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201608526
Subject(s) - total synthesis , morphine , chemistry , benzofuran , stereochemistry , stereoselectivity , metathesis , salt metathesis reaction , combinatorial chemistry , organic chemistry , catalysis , pharmacology , polymer , polymerization , medicine
Morphine has been a target for synthetic chemists since Robinson proposed its correct structure in 1925, resulting in a large number of total syntheses of morphine alkaloids. Here we report a total synthesis of (±)‐morphine that employs two key strategic cyclizations: 1) a diastereoselective light‐mediated cyclization of an O‐arylated butyrolactone to form a tricyclic cis‐fused benzofuran and 2) a cascade ene–yne–ene ring closing metathesis to forge the tetracyclic morphine core. This approach enables a short and stereoselective synthesis of morphine in an overall yield of 6.6 %.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom