z-logo
Premium
Muonium Chemistry at Diiron Subsite Analogues of [FeFe]‐Hydrogenase
Author(s) -
Wright Joseph A.,
Peck Jamie N. T.,
Cottrell Stephen P.,
Jablonskytė Aušra,
Oganesyan Vasily S.,
Pickett Christopher J.,
Jayasooriya Upali A.
Publication year - 2016
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201607109
Subject(s) - muonium , hydride , chemistry , protonation , hydrogenase , metal , microsecond , hydrogen , catalysis , photochemistry , inorganic chemistry , computational chemistry , ion , organic chemistry , physics , astronomy
The chemistry of metal hydrides is implicated in a range of catalytic processes at metal centers. Gaining insight into the formation of such sites by protonation and/or electronation is therefore of significant value in fully exploiting the potential of such systems. Here, we show that the muonium radical (Mu . ), used as a low isotopic mass analogue of hydrogen, can be exploited to probe the early stages of hydride formation at metal centers. Mu . undergoes the same chemical reactions as H . and can be directly observed due to its short lifetime (in the microseconds) and unique breakdown signature. By implanting Mu . into three models of the [FeFe]‐hydrogenase active site we have been able to detect key muoniated intermediates of direct relevance to the hydride chemistry of these systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here