Premium
Diastereoselective [3+2] Annulation of Aromatic/Vinylic Amides with Bicyclic Alkenes through Cobalt‐Catalyzed C−H Activation and Intramolecular Nucleophilic Addition
Author(s) -
Gandeepan Parthasarathy,
Rajamalli Pachaiyappan,
Cheng ChienHong
Publication year - 2016
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201512018
Subject(s) - chemistry , annulation , intramolecular force , bicyclic molecule , nucleophile , amide , catalysis , medicinal chemistry , nucleophilic addition , alkene , cycloaddition , cobalt , bond cleavage , intramolecular reaction , stereochemistry , organic chemistry
A highly diastereoselective method for the synthesis of dihydroepoxybenzofluorenone derivatives from aromatic/vinylic amides and bicyclic alkenes is described. This new transformation proceeds through cobalt‐catalyzed C−H activation and intramolecular nucleophilic addition to the amide functional group. Transition‐metal‐catalyzed C−H activation reactions of secondary amides with alkenes usually lead to [4+2] or [4+1] annulation; to the best of our knowledge, this is the first time that a [3+2] cycloaddition is described in this context. The reaction proceeds under mild conditions and tolerates a wide range of functional groups. Mechanistic studies imply that the C−H bond cleavage may be the rate‐limiting step.