Premium
Wrinkled Graphene Monoliths as Superabsorbing Building Blocks for Superhydrophobic and Superhydrophilic Surfaces
Author(s) -
Lv LiBing,
Cui TianLu,
Zhang Bing,
Wang HongHui,
Li XinHao,
Chen JieSheng
Publication year - 2015
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201507074
Subject(s) - superhydrophilicity , wetting , materials science , graphene , nanotechnology , contact angle , chemical engineering , adsorption , membrane , composite material , chemistry , organic chemistry , biochemistry , engineering
Superhydrophobic and superhydrophilic surfaces are of great interest because of a large range of applications, for example, as antifogging and self‐cleaning coatings, as antibiofouling paints for boats, in metal refining, and for water–oil separation. An aqueous ink based on three‐dimensional graphene monoliths (Gr) can be used for constructing both superhydrophobic and superhydrophilic surfaces on arbitrary substrates with different surficial structures from the meso‐ to the macroscale. The surface wettability of a Gr‐coated surface mainly depends on which additional layers (air for a superhydrophobic surface and water for a superhydrophilic surface) are adsorbed on the surface of the graphene sheets. Switching a Gr‐coated surface between being superhydrophobic and superhydrophilic can thus be easily achieved by drying and prewetting with ethanol. The Gr‐based superhydrophobic membranes or films should have great potential as efficient separators for fast and gravity‐driven oil–water separation.