Premium
Formation of Nickel Sulfide Nanoframes from Metal–Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties
Author(s) -
Yu XinYao,
Yu Le,
Wu Hao Bin,
Lou Xiong Wen David
Publication year - 2015
Publication title -
angewandte chemie
Language(s) - English
Resource type - Journals
eISSN - 1521-3757
pISSN - 0044-8249
DOI - 10.1002/ange.201500267
Subject(s) - materials science , nickel , prussian blue , electrolyte , electrochemistry , nanoparticle , metal organic framework , nanotechnology , chemical engineering , nanostructure , metal , inorganic chemistry , electrode , chemistry , metallurgy , organic chemistry , adsorption , engineering
Nanoframe‐like hollow structures with unique three‐dimensional (3D) open architecture hold great promise for various applications. Current research efforts mainly focus on frame‐like noble metals and metal oxides. However, metal sulfides with frame‐like nanostructures have been rarely reported. Starting from metal–organic frameworks (MOFs), we demonstrate a novel structure‐induced anisotropic chemical etching/anion exchange method to transform Ni‐Co Prussian blue analogue (PBA) nanocubes into NiS nanoframes with tunable size. The reaction between Ni‐Co PBA nanocube templates and Na 2 S in solution leads to the formation of well‐defined NiS nanoframes. The different reactivity between the edges and the plane surface of the Ni‐Co PBA nanocubes is found to be the key factor for the formation of NiS nanoframes. Benefitting from their structural merits including 3D open structure, small size of primary nanoparticles, high specific surface area, and good structural robustness, the as‐derived NiS nanoframes manifest excellent electrochemical performance for electrochemical capacitors and hydrogen evolution reaction in alkaline electrolyte.