Premium
Eigenmodes of a compressible liquid drop
Author(s) -
Wehner J.,
Krappe H. J.
Publication year - 1996
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.2065080602
Subject(s) - eigenvalues and eigenvectors , compressibility , hermitian matrix , drop (telecommunication) , physics , liquid drop , operator (biology) , viscous liquid , asymptotic expansion , entropy (arrow of time) , mathematical analysis , classical mechanics , mathematical physics , mechanics , quantum mechanics , mathematics , computer science , telecommunications , biochemistry , chemistry , repressor , transcription factor , gene
The eigenmodes of a non‐viscous, compressible liquid drop are investigated. The spectrum is shown to be derivable from two Hermitian eigenvalue problems which are weakly coupled by a non‐Hermitian operator. It is shown that both eigenvalue problems admit an asymptotic, lepto‐dermous expansion. Their contribution to the entropy of the droplet therefore also allows for such an expansion.