z-logo
Premium
Electrical and Thermal Transport Properties of n ‐type Bi 6 Cu 2 Se 4 O 6 (2BiCuSeO + 2Bi 2 O 2 Se)
Author(s) -
Zhang Xiaoxuan,
Qiu Yuting,
Ren Dudi,
Zhao LiDong
Publication year - 2020
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.201900340
Subject(s) - thermal conductivity , materials science , thermoelectric effect , electrical resistivity and conductivity , phonon scattering , thermoelectric materials , phonon , debye model , doping , analytical chemistry (journal) , scattering , electron mobility , halogen , microstructure , condensed matter physics , thermodynamics , physics , chemistry , composite material , optics , optoelectronics , chromatography , quantum mechanics , alkyl , organic chemistry
New thermoelectric materials, n‐ type Bi 6 Cu 2 Se 4 O 6 oxyselenides, composed of well‐known BiCuSeO and Bi 2 O 2 Se oxyselenides, are synthesized with a simple solid‐state reaction. Electrical transport properties, microstructures, and elastic properties are investigated with an emphasis on thermal transport properties. Similar to Bi 2 O 2 Se, it is found that the halogen‐doped Bi 6 Cu 2 Se 4 O 6 possesses n ‐type conducting transports, which can be improved via Br/Cl doping. Compared with BiCuSeO and Bi 2 O 2 Se, an extremely low thermal conductivity can be observed in Bi 6 Cu 2 Se 4 O 6 . To reveal the origin of low thermal conductivity, elastic properties, sound velocity, Grüneisen parameter, and Debye temperature are evaluated. Importantly, the calculated phonon mean free path of Bi 6 Cu 2 Se 4 O 6 is comparable to the interlayer distance for BiO─CuSe and BiO─Se layers, which is ascribed to the strong interlayer phonon scattering. Contributing from the outstanding low thermal conductivity and improved electrical transport properties, the maximum ZT ≈0.15 at 823 K and ≈0.11 at 873K are realized in n‐ type Bi 6 Cu 2 Se 3.2 Br 0.8 O 6 and Bi 6 Cu 2 Se 3.6 Cl 0.4 O 6 , respectively, indicating the promising thermoelectric performance in n ‐type Bi 6 Cu 2 Se 4 O 6 oxyselenides.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom