Premium
Transmission of Quantum Fisher Information through Fluctuating Quantum Fields
Author(s) -
Jin Yao
Publication year - 2018
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.201800090
Subject(s) - communication source , physics , quantum , transmission (telecommunications) , concurrence , quantum mechanics , quantum state , state (computer science) , quantum information science , statistical physics , quantum entanglement , computer science , telecommunications , algorithm
Transmission of quantum Fisher information (QFI) of initially disentangled parties is studied and the results show that the indirect correlations generated by the environment, which is considered as a bath of fluctuating quantum fields, will help transmit the quantum information. Specifically, using N initially disentangled atoms—one in an excited state carried by one party (the sender, Alice) and the other in the ground state carried by the other parties (the receivers: Bob1, Bob2,…, Bob( N −1)), the phase factor of the state of another atom held by Alice can be transmitted from Alice to Bob with proper time. The transmitted QFI of the phase factor for each receiver has been calculated as a function of the transmitted distance as well as the measurement time and is found to be in relation with the concurrence of the pair of atoms that the sender and the receiver carry. For each transmitted distance, there exists an optimal measurement time to obtain the maximal transmitted QFI, which is in relation with the total number of receivers.