Premium
Real‐Time and Broadband Terahertz Wave Scattering Manipulation via Polarization‐Insensitive Conformal Graphene‐Based Coding Metasurfaces
Author(s) -
Rouhi Kasra,
Rajabalipanah Hamid,
Abdolali Ali
Publication year - 2018
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.201700310
Subject(s) - terahertz radiation , broadband , graphene , scattering , planar , optics , polarization (electrochemistry) , conformal map , reflection (computer programming) , physics , optoelectronics , materials science , computer science , nanotechnology , mathematical analysis , chemistry , computer graphics (images) , mathematics , programming language
Here, for the first time, the real‐time and broadband manipulation of terahertz (THz) waves are acquired by introducing a multifunctional graphene‐based coding metasurface (GBCM). The designed structure consists of subwavelength patterned graphene units whose operational statuses can be dynamically switched between two digital states of “0” and “1”. By engineering the spatial distribution of chemical potentials across the GBCM, various scattering patterns having single, two, four, and numerous reflection beams are elaborately achieved just within one planar structure. To compute the far‐field pattern of GBCM, an inverse discrete Fourier transform (IDFT) is established, providing a fast and efficient design method. The proposed GBCM provides a low reflection bellow −10 dB over a broad frequency band ranging from 1 THz to 1.9 THz. In addition, the metasurface retains its low reflection behavior in a wide range of incident wave angles for both TE and TM polarizations. According to conformal invariance of graphene sheets, the stealth property of GBCM is well preserved while wrapping around a curved object. The proposed technique of real‐time scattering manipulation leads to multifunctional THz devices, opening new routes contributing to numerous applications such as imaging and stealth technology.