Premium
Magnetic quantum criticality in quasi‐one‐dimensional Heisenberg antiferromagnet Cu ( C 4 H 4 N 2 ) ( NO 3 ) 2
Author(s) -
Shaginyan V. R.,
Stephanovich V. A.,
Popov K. G.,
Kirichenko E. V.,
Artamonov S. A.
Publication year - 2016
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.201500352
Subject(s) - physics , condensed matter physics , quantum critical point , fermion , quantum phase transition , boson , magnon , magnetic field , fermi liquid theory , quantum , phase diagram , antiferromagnetism , heisenberg model , magnetization , quantum mechanics , quantum oscillations , phase transition , fermi surface , phase (matter) , superconductivity , ferromagnetism
We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C 4 H 4 N 2 )(NO 3 ) 2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so‐called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitatively, and derive for the first time the T − H (temperature—magnetic field) phase diagram, that contains Landau‐Fermi‐liquid, crossover and non‐Fermi liquid parts, thus resembling that of heavy‐fermion compounds.