Premium
Application of femtosecond‐pulsed lasers for direct optical manipulation of biological functions
Author(s) -
Yoon Jonghee,
Park Junseong,
Choi Myunghwan,
Jong Choi Won,
Choi Chulhee
Publication year - 2013
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.201200099
Subject(s) - laser , femtosecond , materials science , biophysics , photothermal therapy , pulse duration , ultrafast laser spectroscopy , optoelectronics , optics , nanotechnology , physics , biology
Absorption of photon energy by cells or tissue can evoke photothermal, photomechanical, and photochemical effects, depending on the density of the deposited energy. Photochemical effects require a low energy density and can be used for reversible modulation of biological functions. Ultrashort‐pulsed lasers have a high intensity due to the short pulse duration, despite its low average energy. Through nonlinear absorption, these lasers can deliver very high peak energy into the submicrometer focus area without causing collateral damage. Absorbed energy delivered by ultrashort‐pulsed laser irradiation induces free electrons, which can be readily converted to reactive oxygen species (ROS) and related free radicals in the localized region. Free radicals are best known to induce irreversible biological effects via oxidative modification; however, they have also been proposed to modulate biological functions by releasing calcium ions from intracellular organelles. Calcium can evoke variable biological effects in both excitable and nonexcitable cell types. Controlled stimulation by ultrashort laser pulses generate intracellular calcium waves that can modulate many biological functions, such as cardiomyocyte beat rate, muscle contractility, and blood–brain barrier (BBB) permeability. This article presents optical methods that are useful therapeutic and research tools in the biomedical field and discuss the possible mechanisms responsible for biological modulation by ultrashort‐pulsed lasers, especially femtosecond‐pulsed lasers.