z-logo
Premium
Introducing relativity in global navigation satellite systems
Author(s) -
PascualSánchez J.F.
Publication year - 2007
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.200610229
Subject(s) - satellite , theory of relativity , computer science , physics , theoretical physics , astronomy
Today, the Global Navigation Satellite Systems, used as global positioning systems, are the GPS and the GLONASS. They are based on a Newtonian model and hence they are only operative when several relativistic effects are taken into account. The most important relativistic effects (to order 1/c 2 ) are: the Einstein gravitational blue shift effect of the satellite clock frequency (Equivalence Principle of General Relativity) and the Doppler red shift of second order, due to the motion of the satellite (Special Relativity). On the other hand, in a few years the Galileo system will be built, copying the GPS system unless an alternative project is designed. In this work, it will be also shown that the SYPOR project, using fully relativistic concepts, is an alternative to a mere copy of the GPS system. According to this project, the Galileo system would be exact and there would be no need for relativistic corrections.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here