Premium
Corner Transfer Matrices for the Gaussian Model
Author(s) -
Peschel I.,
Truong T. T.
Publication year - 1991
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.19915030116
Subject(s) - transfer matrix , eigenvalues and eigenvectors , gaussian , conformal map , square lattice , lattice (music) , conformal symmetry , anisotropy , physics , square (algebra) , chain (unit) , gaussian network model , position (finance) , mathematical physics , mathematical analysis , statistical physics , mathematics , geometry , quantum mechanics , finance , computer science , acoustics , ising model , economics , computer vision
We study Baxter's corner transfer matrix for a Gaussian model on a strongly anisotropic square lattice of finite size. The problem is equivalent to finding the normal modes of a vibrating chain with position‐dependent masses and springs. The eigenvalues are found analytically, using Carlitz polynomials, and the predictions of conformal invariance are verified for the critical system.