z-logo
Premium
Corner Transfer Matrices for the Gaussian Model
Author(s) -
Peschel I.,
Truong T. T.
Publication year - 1991
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.19915030116
Subject(s) - transfer matrix , eigenvalues and eigenvectors , gaussian , conformal map , square lattice , lattice (music) , conformal symmetry , anisotropy , physics , square (algebra) , chain (unit) , gaussian network model , position (finance) , mathematical physics , mathematical analysis , statistical physics , mathematics , geometry , quantum mechanics , finance , computer science , acoustics , ising model , economics , computer vision
We study Baxter's corner transfer matrix for a Gaussian model on a strongly anisotropic square lattice of finite size. The problem is equivalent to finding the normal modes of a vibrating chain with position‐dependent masses and springs. The eigenvalues are found analytically, using Carlitz polynomials, and the predictions of conformal invariance are verified for the critical system.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here