Premium
Separable Approximations to the Helium Trimer
Author(s) -
Loucks Roger,
Levinger J. S.
Publication year - 1991
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.19915030111
Subject(s) - trimer , physics , radius , energy (signal processing) , kinetic energy , scattering , monotonic function , range (aeronautics) , helium , dimer , atomic physics , potential energy , quantum mechanics , materials science , mathematical analysis , mathematics , nuclear magnetic resonance , computer security , computer science , composite material
We extend Blatt's and Lim's calculations for the energy of the helium trimer ( 4 He) 3 , for a Herzfeld potential. We use the unitary pole approximation. We constrain the effective range and scattering lenght to values of 7.4 A and infinity, respectively. As the core radius increases from 0 to 2.8 A, the trimer energy increases monotonically from −97 to −59 millikelvin. The Yamaguchi potential gives a trimer energy of −123 mK. Two additional two‐body parameters suffice to fit these, and earlier, calculations of the trimer energy: i.e., the expectation value of the kinetic energy for the dimer, and Sprung's wound integral I o .