z-logo
Premium
Explizite Darstellungsformeln G REEN scher Funktionen von kovarianten Wellengleichungen im schwachen Gravitationsfeld. II. Linearisierte E INSTEIN sche Gravitationsgleichungen
Author(s) -
John R. W.
Publication year - 1973
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.19730290105
Subject(s) - physics , mathematical physics , curvature , perturbation (astronomy) , gravitational field , schwarzschild metric , einstein field equations , einstein equations , einstein , riemann curvature tensor , einstein tensor , gauge (firearms) , field equation , general relativity , classical mechanics , quantum mechanics , mathematics , geometry , archaeology , history
The propagation equations for small perturbations of a background gravitational field satisfying the E INSTEIN equations are considered. For the perturbation potential the covariantly generalized E INSTEIN ‐H ILBERT gauge is chosen. With the aid of the method used in [10], bitensor G REEN 's functions for the propagation equations in a weak vacuum field are given explicitly. The tail term is obtained to be an integral of the first‐order R IEMANN curvature tensor. As an application of the formulae, G REEN 's functions for perturbations of the S CHWARZSCHILD metric are calculated to first order in the mass parameter.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here