Premium
Binäre SLATER‐Summen und Verteilungsfunktionen für quantenstatistische Systeme mit COULOMB‐Wechselwirkung. II
Author(s) -
Rohde K.,
Kelbg G.,
Ebeling W.
Publication year - 1968
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.19684770102
Subject(s) - binary number , physics , coulomb , interpolation (computer graphics) , mathematical physics , mathematics , quantum mechanics , classical mechanics , motion (physics) , arithmetic , electron
In part I of this paper the SLATER‐sums of two charged particles were expanded in TAYLOR‐series with respect to the distance between the particles. Using these expansions we calculate the binary SLATER‐sums for small values of r ( r ≪ λ) λ‐thermal wavelength). In the case of r ≫ λ the binary SLATER‐sums can be approximated by the classical BOLTZMANN‐factor. In the intermediate region r ≈ λ we get the binary SLATER‐sums by interpolation. For high temperatures we obtain KELBG's result. For special cases the binary SLATER‐sums and the binary distribution functions are presented graphically and discussed.