z-logo
Premium
Informationstheoretische Beschreibung physikalischer Vorgänge. IV. Exakte Mastergleichung für gemittelte Verteilungsfunktionen
Author(s) -
Kramarczyk W. J.,
Voss K.
Publication year - 1968
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.19684760306
Subject(s) - master equation , physics , mathematical physics , perturbation theory (quantum mechanics) , perturbation (astronomy) , operator (biology) , quantum mechanics , quantum , biochemistry , chemistry , repressor , transcription factor , gene
An exact markovian master equation for the smoothed classical distribution function f̄ = Mf is derived using the existence of the operator [1 + M (−1 + exp (‐ it L ))] −1 . It is shown that according to the information theory f̄ 0 = 0 (“initial random phase approximation”) should be taken. Then in the first order of a perturbation approach the master equation given by POMPE and VOSS can be derived in the long time approximation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here