Premium
Informationstheoretische Beschreibung physikalischer Vorgänge. IV. Exakte Mastergleichung für gemittelte Verteilungsfunktionen
Author(s) -
Kramarczyk W. J.,
Voss K.
Publication year - 1968
Publication title -
annalen der physik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.009
H-Index - 68
eISSN - 1521-3889
pISSN - 0003-3804
DOI - 10.1002/andp.19684760306
Subject(s) - master equation , physics , mathematical physics , perturbation theory (quantum mechanics) , perturbation (astronomy) , operator (biology) , quantum mechanics , quantum , biochemistry , chemistry , repressor , transcription factor , gene
An exact markovian master equation for the smoothed classical distribution function f̄ = Mf is derived using the existence of the operator [1 + M (−1 + exp (‐ it L ))] −1 . It is shown that according to the information theory f̄ 0 = 0 (“initial random phase approximation”) should be taken. Then in the first order of a perturbation approach the master equation given by POMPE and VOSS can be derived in the long time approximation.