Premium
Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophc lateral sclerosis
Author(s) -
Siklós László,
Engelhardt József,
Harati Yadollah,
Smith R. Glenn,
Joó Ferenc,
Appel Stanley H.
Publication year - 1996
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.410390210
Subject(s) - amyotrophic lateral sclerosis , calcium , motor neuron , pathology , medicine , calcium in biology , motor nerve , synaptic vesicle , neuroscience , anatomy , biology , disease , vesicle , biochemistry , membrane
Numerous studies of amyotrophic lateral sclerosis have suggested that increased intracellular calcium is a common denominator in motoneuron injury. In experimental models, IgG from patients with amyotrophic lateral sclerosis enhanced calcium entry and induced apoptotic cell death in vitro as well as increased intracellular calcium and induced ultrastructural alterations of the motor nerve terminals in mice in vivo. To determine whether similar increases in intracellular calcium and altered morphology are present in motor nerve terminals of amyotrophic lateral sclerosis patients in vivo, muscle biopsy specimens from 7 patients with amyotrophic lateral sclerosis, 10 nondenervating disease control subjects, and 5 patients with denervating neuropathies were analyzed with ultrastructural techniques, employing oxalate‐pyroantimonate fixation to preserve in situ calcium distribution. Motor nerve terminals from amyotrophic lateral sclerosis specimens contained significantly increased calcium, increased mitochondrial volume, and increased numbers of synaptic vesicles compared to any of the disease control groups, without exhibiting excess Schwann envelopment specific to denervating terminals. These results parallel the effect of amyotrophic lateral sclerosis IgG passively transferred to mice, and provide the first demonstration that neuronal calcium is, in fact, increased in amyotrophic lateral sclerosis in vivo.