z-logo
Premium
A computer simulation of conduction block: Effects produced by actual block versus interphase cancellation
Author(s) -
Rhee Edward K.,
England John D.,
Sumner Austin J.
Publication year - 1990
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.410280206
Subject(s) - block (permutation group theory) , compound muscle action potential , thermal conduction , stimulation , amplitude , dispersion (optics) , electrophysiology , biomedical engineering , neuroscience , mathematics , medicine , physics , psychology , combinatorics , optics , thermodynamics
A reduction in compound muscle action potential (CMAP) amplitude and area following proximal versus distal stimulation is the accepted clinical hallmark of conduction block; however, quantitative criteria for determining conduction block remain ambiguous. In this study, digitized records of individual motor unit action potentials (MUAPs) elicited by incremental stimulation in vivo were arithmetically combined in a computer simulation of CMAP generation. Through simulation of possible phase interaction patterns of individual MUAPs, we have shown that abnormal temporal dispersion alone can produce reductions in CMAP area of up to 50%, values that are commonly thought to represent conduction block. Furthermore, by simulating conduction block without excessive temporal dispersion in defined subpopulations of axons, we have demonstrated the importance of the fastest conducting (largest MUAP) axons in determining CMAP amplitude and area. In conclusion, measurements of CMAP amplitude and area in determining conduction block may be misleading if there is significant abnormal temporal dispersion, and quantitation of the degree of conduction block is difficult without knowledge of which subpopulations of axons are affected.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here