z-logo
Premium
Characterization of the Insular Role in Cardiac Function through Intracranial Electrical Stimulation of the Human Insula
Author(s) -
SanchezLarsen Alvaro,
Principe Alessandro,
Ley Miguel,
NavarroCuartero Javier,
Rocamora Rodrigo
Publication year - 2021
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.26074
Subject(s) - insular cortex , chronotropic , stroke volume , cardiac function curve , medicine , insula , cardiology , contractility , heart rate , cardiac output , inotrope , anesthesia , psychology , neuroscience , blood pressure , heart failure
Objective The link between brain function and cardiovascular dynamics is an important issue yet to be elucidated completely. The insula is a neocortical brain area that is thought to have a cardiac chronotropic regulatory function, but its role in cardiac contractility is unknown. We aimed to analyze the variability in heart rate and cardiac contractility after functional activation of different insular regions through direct electrical stimulation (E‐stim) in humans. Methods This was an observational, prospective study, including patients admitted for stereo‐electroencephalographic recording because of refractory epilepsy, in whom the insular cortex was implanted. Patients with anatomical or electrophysiological insular abnormalities and those in whom E‐stim produced subjective symptoms were excluded. Variations in heart rate (HR), stroke volume (SV), and cardiac output (CO) were analyzed during insular E‐stim and compared with control E‐stim of non‐eloquent brain regions and sham stimulations. Results Ten patients were included, 5 implanted in the right insula (52 E‐stim) and 5 in the left (37 E‐stim). Demographic and clinical characteristics of both groups were similar. E‐stim of both right and left insulas induced a significant decrease of the CO and HR, and an increase of the SV. E‐stim of control electrodes and sham stimulations were not associated with variations in cardiac function. Blood pressure and respiratory rate remained unaltered. Interpretation Our results suggest a direct chronotropic and inotropic cardiac depressor function of the right and left insulas. The evidence of an insular direct cardiac regulatory function might open a path in the prevention or treatment of heart failure, arrhythmias, and sudden unexpected death in epilepsy. ANN NEUROL 2021;89:1172–1180

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here