Premium
Mapping holmes tremor circuit using the human brain connectome
Author(s) -
Joutsa Juho,
Shih Ludy C.,
Fox Michael D.
Publication year - 2019
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.25618
Subject(s) - subthalamic nucleus , deep brain stimulation , lesion , neuroscience , connectome , globus pallidus , thalamus , movement disorders , psychology , resting state fmri , medicine , basal ganglia , functional connectivity , central nervous system , pathology , parkinson's disease , disease
Objective Holmes tremor is a debilitating movement disorder with limited treatment options. Lesions causing Holmes tremor can occur in multiple different brain locations, leaving the neuroanatomical substrate unclear. Here, we test whether lesion locations that cause Holmes tremor map to a connected brain circuit and whether this circuit might serve as a useful therapeutic target. Methods Case reports of Holmes tremor caused by focal brain lesions were identified through a systematic literature search. Connectivity between each lesion location and the rest of the brain was computed using resting state functional connectivity magnetic resonance imaging data from 1,000 healthy volunteers. Commonalities across lesion locations were identified. This Holmes tremor circuit was then compared to neurosurgical treatment targets and clinical efficacy. Results We identified 36 lesions causing Holmes tremor, which were scattered across multiple different brain regions. However, all lesion locations were connected to a common brain circuit with nodes in the red nucleus, thalamus, globus pallidus, and cerebellum. In cases with effective neurosurgical treatment, the treatment target was connected with the lesion location, indicating that a second hit to the same circuit might be beneficial. Commonly used deep brain stimulation targets such as the ventral intermediate nucleus and subthalamic nucleus fell outside our Holmes tremor circuit, whereas the globus pallidus target was close, consistent with published clinical response rates for these targets. Interpretation Lesions causing Holmes tremor are part of a single connected brain circuit that may serve as an improved therapeutic target. ANN NEUROL 2019;86:812–820