z-logo
Premium
Optic radiation tractography and vision in anterior temporal lobe resection
Author(s) -
Winston Gavin P.,
Daga Pankaj,
Stretton Jason,
Modat Marc,
Symms Mark R.,
McEvoy Andrew W.,
Ourselin Sebastien,
Duncan John S.
Publication year - 2012
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.22619
Subject(s) - optic radiation , tractography , magnetic resonance imaging , temporal lobe , diffusion mri , medicine , visual field , radiology , epilepsy surgery , lobe , neurosurgery , epilepsy , ophthalmology , anatomy , psychiatry
Abstract Objective: Anterior temporal lobe resection (ATLR) is an effective treatment for refractory temporal lobe epilepsy but may result in a contralateral superior visual field deficit (VFD) that precludes driving in the seizure‐free patient. Diffusion tensor imaging (DTI) tractography can delineate the optic radiation preoperatively and stratify risk. It would be advantageous to incorporate display of tracts into interventional magnetic resonance imaging (MRI) to guide surgery. Methods: We studied 20 patients undergoing ATLR. Structural MRI scans, DTI, and visual fields were acquired before and 3 to 12 months following surgery. Tractography of the optic radiation was performed on preoperative images and propagated onto postoperative images. The anteroposterior extent of the damage to Meyer's loop was determined, and visual loss was quantified using Goldmann perimetry. Results: Twelve patients (60%) suffered a VFD (10–92% of upper quadrant; median, 39%). Image registration took <3 minutes and predicted that Meyer's loop was 4.4 to 18.7mm anterior to the resection margin in these patients, but 0.0 to 17.6mm behind the resection margin in the 8 patients without VFD. The extent of damage to Meyer's loop significantly correlated with the degree of VFD and explained 65% of the variance in this measure. Interpretation: The optic radiation can be accurately delineated by tractography and propagated onto postoperative images. The technique is fast enough to propagate accurate preoperative tractography onto intraoperative scans acquired during neurosurgery, with the potential to reduce the risk of VFD. ANN NEUROL 2012;

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here