Premium
Altered functional magnetic resonance imaging resting‐state connectivity in periaqueductal gray networks in migraine
Author(s) -
Mainero Caterina,
Boshyan Jasmine,
Hadjikhani Nouchine
Publication year - 2011
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.22537
Subject(s) - periaqueductal gray , neuroscience , migraine , resting state fmri , allodynia , functional magnetic resonance imaging , ictal , somatosensory system , psychology , nociception , anterior cingulate cortex , medicine , anesthesia , electroencephalography , hyperalgesia , central nervous system , midbrain , cognition , receptor
Objective: The periaqueductal gray matter (PAG), a known modulator of somatic pain transmission, shows evidence of interictal functional and structural abnormalities in migraineurs, which may contribute to hyperexcitability along spinal and trigeminal nociceptive pathways, and lead to the migraine attack. The aim of this study was to examine functional connectivity of the PAG in migraine. Methods: Using resting‐state functional MRI, we compared functional connectivity between PAG and a subset of brain areas involved in nociceptive/somatosensory processing and pain modulation in 17 subjects with migraine, during a pain‐free state, versus 17 gender‐ and age‐matched controls. We also assessed the relation between intrinsic resting‐state correlations within PAG networks and the average monthly frequency of migraine attacks, as well as allodynia. Results: Our findings show stronger connectivity between the PAG and several brain areas within nociceptive and somatosensory processing pathways in migraineurs versus controls. In addition, as the monthly frequency of migraine attacks worsens, the strength of the connectivity in some areas within these pathways increases, whereas a significant decrease in functional resting‐state connectivity between the PAG and brain regions with a predominant role in pain modulation (prefrontal cortex, anterior cingulate, amygdala) can be evidenced. Finally, migraineurs with a history of allodynia exhibit significantly reduced connectivity between PAG, prefrontal regions, and anterior cingulate compared to migraineurs without allodynia. Interpretation: These data reveal interictal dysfunctional dynamics within pain pathways in migraine manifested as an impairment of the descending pain modulatory circuits, likely leading to loss of pain inhibition, and hyperexcitability primarily in nociceptive areas. ANN NEUROL 2011