Premium
Model of infantile spasms induced by N ‐methyl‐ D ‐aspartic acid in prenatally impaired brain
Author(s) -
Velíšek Libor,
Jehle Kamran,
Asche Samantha,
Velíšková Jana
Publication year - 2007
Publication title -
annals of neurology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.764
H-Index - 296
eISSN - 1531-8249
pISSN - 0364-5134
DOI - 10.1002/ana.21082
Subject(s) - betamethasone , nmda receptor , medicine , epileptic spasms , ictal , vigabatrin , hippocampus , anesthesia , epilepsy , endocrinology , psychology , neuroscience , anticonvulsant , receptor
Objective Infantile spasms (a catastrophic epileptic syndrome of childhood) are insensitive to classic antiepileptic drugs. New therapies are limited by lack of animal models. Here we develop a new model of flexion spasms based on prenatal exposure to betamethasone combined with postnatal administration of N ‐methyl‐ D ‐aspartic acid (NMDA) and determine brain structures involved in the induction of flexion spasms. Methods Pregnant rats received two doses of betamethasone on day 15 of gestation. Offspring was injected with NMDA on postnatal day 15. Effects of adrenocorticotropin therapy on the development of age‐specific flexion spasms were determined and electroencephalographic correlates recorded. C‐fos immunohistochemistry and [ 14 C]2‐deoxyglucose imaging identified brain structures involved in the development of flexion spasms. Results Prenatal betamethasone exposure sensitizes rats to development of NMDA‐induced spasms and, most importantly, renders the spasms sensitive to adrenocorticotropin therapy. Ictal electroencephalogram results correspond to human infantile spasms: electrodecrement or afterdischarges were observed. Imaging studies defined three principal regions involved in NMDA spasms: limbic areas (except the dorsal hippocampus), hypothalamus, and the brainstem. Interpretation Despite certain limitations, our new model correlates well with current infantile spasm hypotheses and opens an opportunity for development and testing of new effective drugs. Ann Neurol 2007;61:109–119