Premium
Estimation of adult skeletal age‐at‐death using the Sugeno fuzzy integral
Author(s) -
Anderson Melissa F.,
Anderson Derek T.,
Wescott Daniel J.
Publication year - 2010
Publication title -
american journal of physical anthropology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.146
H-Index - 119
eISSN - 1096-8644
pISSN - 0002-9483
DOI - 10.1002/ajpa.21190
Subject(s) - skeleton (computer programming) , fuzzy logic , estimation , reliability (semiconductor) , forensic anthropology , computer science , statistics , sample (material) , population , identification (biology) , mathematics , artificial intelligence , econometrics , medicine , geography , biology , engineering , power (physics) , chemistry , physics , environmental health , systems engineering , archaeology , chromatography , quantum mechanics , programming language , botany
Age‐at‐death estimation of an individual skeleton is important to forensic and biological anthropologists for identification and demographic analysis, but it has been shown that the current aging methods are often unreliable because of skeletal variation and taphonomic factors. Multifactorial methods have been shown to produce better results when determining age‐at‐death than single indicator methods. However, multifactorial methods are difficult to apply to single or poorly preserved skeletons, and they rarely provide the investigator with information about the reliability of the estimate. The goal of this research is to examine the validity of the Sugeno fuzzy integral as a multifactorial method for modeling age‐at‐death of an individual skeleton. This approach is novel because it produces an informed decision of age‐at‐death utilizing multiple age indicators while also taking into consideration the accuracies of the methods and the condition of the bone being examined. Additionally, the Sugeno fuzzy integral does not require the use of a population and it qualitatively produces easily interpreted graphical results. Examples are presented applying three commonly used aging methods on a known‐age skeletal sample from the Terry Anatomical Collection. This method produces results that are more accurate and with smaller intervals than single indicator methods. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.