z-logo
Premium
Elastic modulus variation in mandibular bone: A microindentation study of Macaca fascicularis
Author(s) -
Rapoff Andrew J.,
Rinaldi Renaud G.,
Hotzman Jennifer L.,
Daegling David J.
Publication year - 2008
Publication title -
american journal of physical anthropology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.146
H-Index - 119
eISSN - 1096-8644
pISSN - 0002-9483
DOI - 10.1002/ajpa.20714
Subject(s) - orthotropic material , dental alveolus , cortical bone , anatomy , elastic modulus , materials science , transverse isotropy , elasticity (physics) , anisotropy , composite material , biology , dentistry , physics , optics , medicine , finite element method , thermodynamics
We characterized the heterogeneous anisotropic elastic properties of mandibular bone in an adult female specimen of Macaca fascicularis using the technique of microindentation. This approach used an indenter of known mass and geometry to sample bone hardness at a spatial resolution in the order of 100 μm. Hardness values were converted to elastic modulus using empirically derived regression. We determined properties in alveolar, midcorpus, and basal regions of coronal and transverse sections taken from multiple locations along the corpus and ramus. Within sections, we determined properties from endosteal, midcortical, and periosteal regions. We found regional variations in bone structure, including bands of orthotropic circumferential lamellar bone at the endosteal and periosteal corpus base, angular region, and ramus. Transversely isotropic osteonal bone characterizes the midcortices of alveolar and basal regions, with many resorption spaces in alveolar regions restricting sampling opportunities. Regional variations in elasticity include relatively compliant bone in the anterior corpus and ramus. Basal cortical bone is stiffer longitudinally than transversely or superoinferiorly, while the evidence for directional dependence in alveolar bone is equivocal. Alveolar bone appears to be relatively compliant with respect to bone found in midcorpus or basal regions. Considerable variation exists in structure and material properties on a highly localized scale, more so than is discernible through conventional approaches for determining material property variation. Am J Phys Anthropol, 2008. © 2007 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here