z-logo
Premium
Craniometric variation among modern human populations
Author(s) -
Relethford John H.
Publication year - 1994
Publication title -
american journal of physical anthropology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.146
H-Index - 119
eISSN - 1096-8644
pISSN - 0002-9483
DOI - 10.1002/ajpa.1330950105
Subject(s) - crania , heritability , variation (astronomy) , biology , genetic variation , homo sapiens , evolutionary biology , multivariate statistics , geography , demography , statistics , genetics , mathematics , gene , physics , archaeology , anatomy , sociology , astrophysics
Abstract Previous studies of genetic markers and mitochondrial DNA have found that the amount of variation among major geographic groupings of Homo sapiens is relatively low, accounting for roughly 10% of total variation. This conclusion has had implications for the study of human variation and consideration of alternative models for the origin of modern humans. By contrast, it has often been assumed that the level of among‐group variation for morphological traits is much higher. This study examines the level of among‐group variation based on Craniometric data from a large sample of modern humans originally collected by W. W. Howells. A multivariate method based on quantitative genetics theory was used to provide an estimate of F ST — a measure of among‐group variation that can be compared with results from studies of genetic markers. Data for 57 Craniometric variables on 1,734 crania were analyzed. These data represent six core areas: Europe, Sub‐Saharan Africa, Australasia, Polynesia, the Americas, and the Far East. An additional set of analyses was performed using a three‐region subset (Europe, Sub‐Saharan Africa, and the Far East) to provide comparability with several genetic studies. The minimum F ST (assuming complete heritability) for the three‐region analysis is 0.065, and the minimum F ST for the six‐region analysis is 0.085. Both of these are less than the average F ST from genetic studies (average estimates of 0.10–0.11). The smaller value of the minimum F ST estimates is expected since it provides an estimate of F ST expected under complete heritability. Using an estimate of average craniometric heritability from the literature provides an estimate of F ST of 0.112 for the three‐region analysis and 0.144 for the six‐region analysis. These results show that genetic and craniometric data are in agreement, qualitatively and quantitatively, and that there is limited variation in modern humans among major geographic regions. © 1994 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here