z-logo
Premium
Convergence of genetic distances in a migration matrix model
Author(s) -
Wood James W.
Publication year - 1986
Publication title -
american journal of physical anthropology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.146
H-Index - 119
eISSN - 1096-8644
pISSN - 0002-9483
DOI - 10.1002/ajpa.1330710208
Subject(s) - convergence (economics) , matrix (chemical analysis) , mathematics , economics , materials science , composite material , economic growth
A recurring problem with the use of migration matrix models of genetic differentiation has to do with their convergence properties. In practice, predictions can be drawn from these models only at equilibrium; but in the case of the standard predictors (most of which are modifications of Wright's F ST ), it can take an unrealistically large number of generations to approach equilibrium. An alternative set of predictors, the set of all pairwise genetic distances among the populations that define the rows and columns of the migration matrix, is investigated here. These distances are shown analytically to converge much more rapidly than the more commonly used predictors. In an application of the model to migration data on a human population from Papua New Guinea, it takes only about three to four generations for the pairwise distances to converge, in contrast to more than 100 generations for one of the standard predictors. In this case, moreover, the distances predicted by the model at equilibrium are similar to those calculated from the available genetic data.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here