Premium
The role of basicranial synchondroses in flexure processes and ontogenetic development of the skull base
Author(s) -
Michejda Maria
Publication year - 1972
Publication title -
american journal of physical anthropology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.146
H-Index - 119
eISSN - 1096-8644
pISSN - 0002-9483
DOI - 10.1002/ajpa.1330370119
Subject(s) - synchondrosis , endochondral ossification , anatomy , ossification , ossification center , occipital bone , skull , cartilage , bone growth , neurocranium , biology , endocrinology
The contribution of the basicranial synchondroses in the growth of neurocranial length and ontogenetic development of the cranial base were investigated. The study concentrated on the midsphenoidal synchondrosis and its delayed fusion in nonhuman primates when compared to man, and on the spheno‐occipital synchondrosis. The mode and time of fusion of both growth centers were observed, and their role in the ontogenetic growth changes (flattening processes) of the cranial base were established. The chondrogenic ossification of midsphenoidal and spheno‐occipital synchondroses was studied on 20 skulls of Macaca mulatta females, ranging in age from newborn specimens to those 24 months old. The technique of in vivo tetracycline bone labeling was used for histologic evaluation of the material. Different chondrogenic growth patterns were observed in both synchondroses. The endochondral activity of the spheno‐occipital synchondrosis increased with age, from a nonactive narrow cartilaginous column in the neonatal specimen to a broad band with high chondrogenic ossification in the 24‐month‐old specimens. This growth center contributes to elongation of the posterior portion of the cranial base and is a secondary factor in its flexion. The midsphenoidal synchondrosis seems to be the primary factor in the mode of flexure of the cranial base in Macaques. This growth center is very active in the first ten months of life but later exhibits cessation of chondrogenic activity and long remains unfused. The first signs of fusion were observed as late as 72 months of age. At the same time, the continuous process of cranial base flattening showed the first signs of tapering off.