z-logo
Premium
Variability of metapodials in primates with rudimentary digits: Ateles geoffroyi, Colobus guereza , and Perodicticus potto
Author(s) -
Tague Robert G.
Publication year - 2002
Publication title -
american journal of physical anthropology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.146
H-Index - 119
eISSN - 1096-8644
pISSN - 0002-9483
DOI - 10.1002/ajpa.10028
Subject(s) - biology , intraspecific competition , zoology , interspecific competition , evolutionary biology , ecology
A tenet of evolutionary theory is that, within a species, phenotypic variability is inversely related to the intensity of stabilizing selection. A corollary is that a rudimentary or vestigial structure should be highly variable. This relationship between rudimentation and variability, however, may simply be part of a continuum, as several studies have shown that variability and size of a structure are inversely related. This study tests whether the first metacarpal (MC1) in Ateles geoffroyi and Colobus guereza and the second metacarpal (MC2) in Perodicticus potto are highly variable in their lengths relative to their other metapodials. The former two species have rudimentary thumbs, and the latter species has a rudimentary index finger. Fourteen other species of primates are included in the comparison. The results show that MC1 in A. geoffroyi and C. guereza and MC2 in P. potto are the relatively shortest first and second metapodials, respectively, in this sample of primates. However, an intraspecific analysis shows that neither MC1 in A. geoffroyi and C. guereza nor MC2 in P. potto is significantly more variable than the other metapodials. Nevertheless, an interspecific analysis shows that MC1 in A. geoffroyi and C. guereza is relatively the most variable among the first metapodials (i.e., MC1 and first metatarsal) in this study. MC2 in P. potto , however, is of relatively low variability compared with the other primates. These contrasting results are interpreted in terms of the developmental and evolutionary biology of digits. Am J Phys Anthropol 117:195–208, 2002. © 2002 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here