Premium
Transition‐Metal‐Free C−H Silylation: An Emerging Strategy
Author(s) -
Tyagi Aparna,
Yadav Naveen,
Khan Jabir,
Singh Sanjay,
Kumar Hazra Chinmoy
Publication year - 2021
Publication title -
asian journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.846
H-Index - 44
eISSN - 2193-5815
pISSN - 2193-5807
DOI - 10.1002/ajoc.202000584
Subject(s) - silylation , chemistry , transition metal , lewis acids and bases , context (archaeology) , catalysis , silicon , molecule , organic chemistry , nanotechnology , materials science , paleontology , biology
Silicon‐containing molecules are of great interest with widespread applications in several research areas such as polymer chemistry, materials science, medicinal chemistry, and complex molecule synthesis. Transition‐metal‐free C−H silylation is an essential process because this process is useful in fabricating carbon‐silicon bonds which can be further transformed into a number of other compounds. Since transition‐metal‐catalyzed C−H bond silylation is a developed field, therefore this context only contains transition‐metal‐free pathways for transforming C−H bond to C−Si (Si=SiR3) bond. This review has been further categorized and subcategorized based on intermediates involved and catalysts used during this transformation. This synopsis summarizes recent developments in the area of silicon chemistry with a focus of innovative transition‐metal‐free catalytic silylation using different strategies such as free radical, base promoted, Brønsted acid, Lewis acid, and frustrated Lewis pair.