Premium
De novo dup(X)(q22.3q26) in a girl with evidence that functional disomy of X material is the cause of her abnormal phenotype
Author(s) -
Armstrong Linlea,
McGowanJordan Jean,
Brierley Kathleen,
Allanson Judith E.
Publication year - 2002
Publication title -
american journal of medical genetics part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.064
H-Index - 112
eISSN - 1552-4833
pISSN - 1552-4825
DOI - 10.1002/ajmg.a.10727
Subject(s) - dup , microcephaly , short stature , phenotype , gonadal dysgenesis , biology , girl , genetics , hypertrichosis , failure to thrive , anatomy , gene duplication , endocrinology , evolutionary biology , gene
The relationship between phenotype and Xq duplications in females remains unclear. Some females are normal; some have short stature; and others have features such as microcephaly, developmental delay/mental retardation, body asymmetries, and gonadal dysgenesis. There are several hypotheses proposed in the literature to explain this variability. We describe a 7‐year‐old girl with dup(X)(q22.3q26). The pregnancy was complicated by intrauterine growth retardation, and she was distressed during labor. During her first year she fed poorly and failed to thrive. She has microcephaly, her height is at the 10th centile, and her hands and feet are strikingly small. She is hypotonic and delayed. Asymmetries of muscle power, and of leg and foot length have been noted. She has mild unilateral ptosis. She has some features of Turner syndrome, and multiple other minor anomalies such as flat labia. These are features common to other described females. This report describes our patient in detail and compares her phenotype to those of the other females with Xq duplications, displays our laboratory investigations, and discusses ideas regarding the pathogenesis of phenotype. The duplicated X is of paternal origin. It is inactivated in all cells; however, the distal duplicated portion appears to be active. We suggest that functional disomy of the duplicated X material, due to local escape from inactivation, may be responsible for the phenotype in the affected females. © 2002 Wiley‐Liss, Inc.