z-logo
Premium
Induction of autophagy by Imatinib sequesters Bcr‐Abl in autophagosomes and down‐regulates Bcr‐Abl protein
Author(s) -
Elzinga Baukje M.,
Nyhan Michelle J.,
Crowley Lisa C.,
O'Donovan Tracey R.,
Cahill Mary R.,
McKenna Sharon L.
Publication year - 2013
Publication title -
american journal of hematology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.456
H-Index - 105
eISSN - 1096-8652
pISSN - 0361-8609
DOI - 10.1002/ajh.23428
Subject(s) - autophagy , imatinib , cancer research , k562 cells , tyrosine kinase , abl , imatinib mesylate , breakpoint cluster region , microbiology and biotechnology , biology , gene knockdown , myeloid leukemia , chemistry , leukemia , signal transduction , cell culture , immunology , apoptosis , receptor , biochemistry , genetics
Chronic Myeloid Leukemia (CML) is a disease of hematopoietic stem cells which harbor the chimeric gene Bcr‐Abl. Expression levels of this constitutively active tyrosine kinase are critical for response to tyrosine kinase inhibitor treatment and also disease progression, yet the regulation of protein stability is poorly understood. We have previously demonstrated that imatinib can induce autophagy in Bcr‐Abl expressing cells. Autophagy has been associated with the clearance of large macromolecular signaling complexes and abnormal proteins, however, the contribution of autophagy to the turnover of Bcr‐Abl protein in imatinib treated cells is unknown. In this study, we show that following imatinib treatment, Bcr‐Abl is sequestered into vesicular structures that co‐localize with the autophagy marker LC3 or GABARAP. This association is inhibited by siRNA mediated knockdown of autophagy regulators (Beclin 1/ATG7). Pharmacological inhibition of autophagy also reduced Bcr‐Abl/LC3 co‐localization in both K562 and CML patient cells. Bcr‐Abl protein expression was reduced with imatinib treatment. Inhibition of both autophagy and proteasome activity in imatinib treated cells was required to restore Bcr‐Abl protein levels to those of untreated cells. This ability to down‐regulate Bcr‐Abl protein levels through the induction of autophagy may be an additional and important feature of the activity of imatinib. 88:455–462, 2013. © 2013 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here