Premium
Whole genome duplication does not promote common modes of reproductive isolation in Trifolium pratense
Author(s) -
Porturas Laura D.,
Segraves Kari A.
Publication year - 2020
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/ajb2.1466
Subject(s) - biology , genome , gene duplication , isolation (microbiology) , reproductive isolation , evolutionary biology , genetics , botany , gene , bioinformatics , demography , population , sociology
Premise Although polyploidy has been studied since the early 1900s, fundamental aspects of polyploid ecology and evolution remain unexplored. In particular, surprisingly little is known about how newly formed polyploids (neopolyploids) become demographically established. Models predict that most polyploids should go extinct within the first few generations as a result of reproductive disadvantages associated with being the minority in a primarily diploid population (i.e., the minority cytotype principle), yet polyploidy is extremely common. Therefore, a key goal in the study of polyploidy is to determine the mechanisms that promote polyploid establishment in nature. Because premating isolation is critical in order for neopolylpoids to avoid minority cytotype exclusion and thus facilitate establishment, we examined floral morphology and three common premating barriers to determine their importance in generating reproductive isolation of neopolyploids from diploids. Methods We induced neopolyploidy in Trifolium pratense and compared their floral traits to the diploid progenitors. In addition to shifts in floral morphology, we examined three premating barriers: isolation by self‐fertilization, flowering‐time asynchrony, and pollinator‐mediated isolation. Results We found significant differences in the morphology of diploid and neopolyploid flowers, but these changes did not facilitate premating barriers that would generate reproductive isolation of neopolyploids from diploids. There was no difference in flowering phenology, pollinator visitation, or selfing between the cytotypes. Conclusions Our results indicate that barriers other than the ones tested in this study—such as geographic isolation, vegetative reproduction, and pistil–stigma incompatibilities—may be more important in facilitating isolation and establishment of neopolyploid T. pratense .