Premium
The fitness benefits of germinating later than neighbors
Author(s) -
Leverett Lindsay D.,
Schieder IV George F.,
Donohue Kathleen
Publication year - 2018
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/ajb2.1004
Subject(s) - germination , biology , phenology , fecundity , seedling , dormancy , canopy , competition (biology) , seed dormancy , ecology , ecosystem , botany , population , demography , sociology
Premise of the Study Phenology, the seasonal timing of development, can alter biotic interactions. Emergence from dormant or quiescent stages often occurs earlier when neighbors are present, which may reduce the neighbors' competitive effects. Delayed emergence in response to neighbors also has been observed, but the potential benefits of such delays are unclear. Further, emergence time may respond to neighbors experienced by parents, which may predict future competition in offspring. Methods In the annual plant Arabidopsis thaliana (Brassicaceae), we quantified seed germination responses to neighbors in parental and offspring (seed) environments. To examine how observed changes in germination affect interactions with neighbors, we performed an outdoor experiment using neighbors of different sizes to represent different germination times. Key Results Seeds were more likely to germinate if their parent had neighbors, but they were less likely to germinate if they themselves experienced a neighbor cue (canopy). As seeds lost dormancy over time, they gained the ability to germinate under a canopy, which suggests that they germinate later in the presence of neighbors. Neighbors of both sizes reduced growth, survival to reproduction, fecundity, and total fitness, but large neighbors increased seedling survival. Smaller neighbors provided no such benefit and had stronger negative effects. Conclusions Delayed germination in response to neighbors can reduce negative interactions and promote positive ones if it occurs late enough to expose seedlings to larger neighbors. By altering relative phenologies and, in turn, the outcomes of biotic interactions, phenological responses to environmental change may influence species interactions and community dynamics.