z-logo
open-access-imgOpen Access
Liquid Cybernetic Systems: The Fourth‐Order Cybernetics
Author(s) -
Chiolerio Alessandro
Publication year - 2020
Publication title -
advanced intelligent systems
Language(s) - English
Resource type - Journals
ISSN - 2640-4567
DOI - 10.1002/aisy.202000120
Subject(s) - cybernetics , computer science , von neumann architecture , robotics , artificial intelligence , robot , control engineering , engineering , operating system
Technological development in robotics, computing architectures and devices, and information storage systems, in one single word: cybernetic systems, has progressed according to a jeopardized connection scheme, difficult if not impossible to track and picture in all its streams. Aim of this progress report is to critically introduce the most relevant limits and present a promising paradigm that might bring new momentum, offering features that naturally and elegantly overcome current challenges and introduce several other advantages: liquid cybernetic systems. The topic describing the four orders of cybernetic systems identified so far is introduced, evidencing the features of the fourth order that includes liquid systems. Then, current limitations to the development of conventional, von Neumann‐based cybernetic systems are briefly discussed: device integration, thermal design, data throughput, and energy consumption. In the following sections, liquid‐state machines are introduced, providing a computational paradigm (free from in materio considerations) that goes into the direction of solving such issues. Two original in materio implementation schemes are proposed: the COlloIdal demonsTratOR (COgITOR) autonomous robot, and a soft holonomic processor that is also proposed to realize an autolographic system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here