z-logo
Premium
Rapid estimation of cylinder erosion rates in abrasive dust‐laden streams
Author(s) -
Rosner Daniel E.,
Tandon Pushkar,
Labowsky Michael J.
Publication year - 1995
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.690410505
Subject(s) - reynolds number , mechanics , particle size , abrasive , erosion , projectile , range (aeronautics) , particle size distribution , materials science , physics , composite material , geology , metallurgy , turbulence , paleontology
Abstract Erosion yield data for particular combinations of target and projectile materials (via laboratory experiments carried out with a narrow‐size distribution over the important range of impact velocities and incidence angles), together with recently developed rational correlations for inertial impaction of suspended particles on a cylinder in high Reynolds number crossflow are used to provide a tractable framework for predicting the erosion rates of, say, heat exchanger tubes immersed in particle‐laden streams of combustion products.“Universal” results are cast in terms of the following accessible parameters: sensitivity of erosion yield to projectile incident velocity and angle, ratio of mean particle size to the threshold size required for impaction on the cylindrical target, spread of the mainstream particle size distribution (here log‐normal), and the characteristic “slip” Reynolds number for the critical size abrasive particle in the mainstream. Applications of the results are illustrated, and several generalizations are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here