z-logo
Premium
Molecular thermodynamic model for Helix‐Helix docking and protein aggregation
Author(s) -
Chen ChauChyun,
King Jonathan,
Wang Daniel I. C.
Publication year - 1995
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.690410433
Subject(s) - chemistry , helix (gastropod) , gibbs free energy , protein folding , configuration entropy , docking (animal) , lattice protein , entropy (arrow of time) , crystallography , intramolecular force , alpha helix , thermodynamics , stereochemistry , circular dichroism , biochemistry , biology , physics , medicine , ecology , nursing , snail
The formation of aggregates, rather than correctly folded polypeptide chains, is a pressing problem in biotechnology that has been difficult to approach quantitatively. The competition between folding and aggregation has been carefully analyzed for bovine growth hormone (bGH) and can be attributed to incorrect helix‐helix docking for this four‐helix bundle protein. An extended molecular thermodynamic model reported here represents Gibbs energy changes associated with intramolecular and intermolecular helix‐helix dockings occurring during protein folding and protein aggregation. The model incorporates (1) a semiempirical local composition Gibbs energy expression to account for the helix‐helix hydrophobic interactions, which favor helix‐helix docking and aggregation and (2) a Flory‐Huggins‐type Gibbs energy expression to describe the configurational entropy of the polypeptide backbone conformation, which favors disaggregation. For the folding and aggregation of bGH, the molecular thermodynamic model provides estimates for the Gibbs energies and thermodynamic stabilities of various conformations of bGH and qualitatively accounts for the competition between aggregation and productive folding. It also successfully describes the inhibition of aggregation found with peptides corresponding to bGH helical sequences and the effect of site‐directed mutagenesis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here