Premium
Rate type equations for the diffusion in polymers: Thermodynamic constraints
Author(s) -
Doghieri Ferruccio,
Roda Giovanni Camera,
Sarti Giulio C.
Publication year - 1993
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.690391112
Subject(s) - diffusion , polymer , thermodynamics , type (biology) , materials science , chemistry , physics , organic chemistry , geology , paleontology
Conditions imposed by the second law of thermodynamics on viscoelastic rate type constitutive equations for the diffusive mass flux are considered. The analysis of three different rate type models proposed in the literature points out that presently physically unrealistic predictions are possible in desorption processes. The thermodynamic analysis of such models, based on the entropy inequality and on the stability requirement of the equilibrium states, leads to precise relationships among relaxation times, diffusion coefficients, and entropy equations of state. In particular, the analysis shows that relaxation times and diffusion coefficients cannot be simply constant numbers. When the thermodynamic constraints imposed on the constitutive equations are introduced, the models do not show physically unrealistic behaviors any more; Fickian diffusion close to the pure penetrant or pure polymer regions is also recovered. Finally, it is shown that the stability requirement for the equilibrium states may introduce very rigid requirements for the model feasibility, well beyond what appears explicitly from the kinetic equations alone.