Premium
Application of flexible recipes for model building, batch process optimization and control
Author(s) -
Keesman Karel J.
Publication year - 1993
Publication title -
aiche journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.958
H-Index - 167
eISSN - 1547-5905
pISSN - 0001-1541
DOI - 10.1002/aic.690390406
Subject(s) - process (computing) , a priori and a posteriori , computer science , simplex , feed forward , basis (linear algebra) , simplex algorithm , recipe , process modeling , process optimization , process control , mathematical optimization , control engineering , engineering , mathematics , algorithm , linear programming , philosophy , chemistry , geometry , food science , epistemology , environmental engineering , operating system
Unlike the traditionally fixed recipes in batch process operation, flexible recipes allow the adjustment of some of its relevant recipe items. These adjustments can either be predefined in cases of planned experimentation, or suggested by a formal process optimization or control algorithm on the basis of actual information. In both the response surface methodology and the simplex evolutionary operation (EVOP), some well‐known methods for empirical model building and process optimization, flexible recipes are involved. Another application of flexible recipes arises in a feedforward quality control strategy of batch processes when variations in market or process conditions are known a priori. The experimental results of these strategies are presented for the batchwise production of benzylalcohol on a pilotplant scale. Experiments have been performed to obtain a reliable model of the yield. On the basis of this model, better process conditions have been suggested, which substantially deviate from the final simplex resulted from experiments within simplex EVOP. Finally, an adaptive feedforward control strategy has been applied for a priori known disturbances in the process inputs.